Worked Solutions

Pure Maths, Differential Calculus,

sheet PM-DIFF-PR-01

The Product Rule Q.8

differentiate the function $y = 2x\cos^2(x)$

$$y = 2x\cos^2(x)$$

The **Product Rule** states that if

$$y = u(x) \cdot v(x)$$

then:

$$\frac{dy}{dx} = \frac{du}{dx} \cdot v(x) + u(x) \cdot \frac{dv}{dx}$$

let
$$u(x) = 2x$$
 then $\frac{du}{dx} = 2$
let $v(x) = \cos^2(x)$

then
$$\frac{dv}{dx} = 2\cos(x) \cdot (-\sin(x)) = -2\cos(x)\sin(x)$$

substituting into the Product Rule equation:

$$\frac{dy}{dx} = 2 \cdot \cos^2(x) + 2x \cdot (-2\cos(x)\sin(x))$$

simplifying the expression:

$$\frac{dy}{dx} = 2\cos^2(x) - 4x\cos(x)\sin(x)$$