Worked Solutions

Pure Maths, Differential Calculus,

sheet PM-DIFF-CR-01

The Chain Rule Q. 4

differentiate $y = (2 - x^2)^2$.

inner function is $u = 2 - x^2$

outer function is $y = u^2$, where $u = 2 - x^2$

differentiating the outer function $y = u^2$

$$\frac{dy}{du} = 2u$$

differentiating the inner function $u = 2 - x^2$

$$\frac{du}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

substituting for
$$\frac{dy}{du} = 2u$$
 and $\frac{du}{dx} = -2x$

therefore
$$\frac{dy}{dx} = 2u \cdot (-2x)$$

substituting for
$$u = 2 - x^2$$

$$\frac{dy}{dx} = 2(2 - x^2) \cdot (-2x)$$

$$\frac{dy}{dx} = -4x(2-x^2)$$

answer:
$$\frac{dy}{dx} = -8x + 4x^3$$

answer:
$$\frac{dy}{dx} = 4x^3 - 8x$$