Worked Solutions

Pure Maths, Differential Calculus, sheet PM-DIFF-CR-01

The Chain Rule Q. 8

We are tasked with differentiating $y=(3x-2x^{-5})^{rac{3}{5}}$ using the chain rule. Let's go step by step.

Step 1: Apply the chain rule

Let:

$$u = 3x - 2x^{-5}$$

Then:

 $y = u^{rac{3}{5}}$

The chain rule states:

$$rac{dy}{dx} = rac{dy}{du} \cdot rac{du}{dx}$$

Step 2: Differentiate $y = u^{rac{3}{5}}$ with respect to u:

$$rac{dy}{du}=rac{3}{5}u^{-rac{2}{5}}$$

Step 3: Differentiate $u = 3x - 2x^{-5}$ with respect to x:

Step 4: Combine using the chain rule

$$rac{dy}{dx} = rac{dy}{du} \cdot rac{du}{dx}$$
 $rac{dy}{dx} = \left(rac{3}{5}u^{-rac{2}{5}}
ight) \cdot (3 + 10x^{-6})$

Substitute back $u = 3x - 2x^{-5}$:

$$\frac{dy}{dx} = \frac{3}{5}(3x - 2x^{-5})^{-\frac{2}{5}} \cdot (3 + 10x^{-6})$$

Final Answer:

$$rac{dy}{dx} = rac{3(3+10x^{-6})}{5(3x-2x^{-5})^{rac{2}{5}}}$$