STATISTICS - Section 2

 

Binomial Distribution 4

 

 

P(X<x)

P(X=x)

P(X<x)

P(X>x)

P(X>x)

 

 

 

Cumulative Probability Tables - case of p>0.5

 

These give the tabulated value of P(X< x) . This means that the probability displayed is less than or equal to an observed value of x.

 

The random variable X is distributed Binomially, where there are n trials and probability of success p .

 

Working out values of random variable probabilty P(X) for the case of p>0.5 is complicated by the fact that values of p only go up to 0.5 .

 

The way around this problem is to consider another random variable Y , representing failure.

 

So we have:

 

 

pX + pY = 1

 

 

In the same way as X, Y is distributed binomially:

 

 

Y ~ B(n,1 - pY)

 

 

Say that the random variable X has values X = 0, 1, 2, 3, 4, 5

 

A table of values for X (success) and Y (failure) looks like this:

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

The method is to use the table to produce an expression in Y that will use values of p<0.5 .

 

 

back to top

 

 

The case      P(X<x)

 

Say we wish to find the value of P(X<4) for :

 

X = 0, 1, 2, 3, 4, 5      pX=0.85*       n=6

 

tables only go up to 0.5

 

X (success) and Y (failure) are related so:

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

The sum of successes and failures for each outcome must always be the same (ie 5).

 

The probability for Y becomes py=0.15*     (pX + pY= 1)

 

* py <0.5 and therefore on the table

 

 

From the table,

 

P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4)

 

= P(Y=5) + P(Y=4) + P(Y=3) + P(Y=2) + P(Y=1)

 

 

this can be written:

 

 

P(X<4) = P(Y>1)

 

 

since,

 

P(Y=0) + P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5) = 1

 

P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5) = 1 - P(Y=0)

 

 

in other words,

 

 

P(Y>1) = 1 - P(Y<0)

 

 

hence the original inequality can be rewritten :

 

 

P(X<4) = 1 - P(Y<0)

 

 

Using the tables to find the value of P(Y<0) for n=6 pY=0.15 , Y=0 :

 

 

P(Y<0) = 0.3771

 

 

binomial distribution - cumulative probability table #2

 

 

hence,

 

P(X<4) = 1 - 0.3771 = 0.6229

 

 

back to top

 

 

The case      P(X=x)

 

Consider the binomial distribution for success,

 

 

X ~ B(n, pX)

 

 

X = 0, 1, 2, 3, 4, 5      pX=0.85       n=6

 

 

also the binomial distribution for failure,

 

 

Y ~ B(n, pY)

 

 

Y= 0, 1, 2, 3, 4, 5      pY=0.15       n=6

 

 

 

Say we want to find P(X=4).

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

From the table it follows that,

 

P(X=4) = P(Y=1)

 

 

P(Y=1) = P(Y<1) - P(Y<0)

 

 

P(X=4) = P(Y<1) - P(Y<0)

 

 

P(X=4) = 0.7765 - 0.3771 = 0.3994

 

 

back to top

 

 

The case     P(X<x)

 

Consider the binomial distribution for success,

 

 

X ~ B(n, pX)

 

 

X = 0, 1, 2, 3, 4, 5      pX=0.85       n=6

 

 

also the binomial distribution for failure,

 

 

Y ~ B(n, pY)

 

 

Y= 0, 1, 2, 3, 4, 5      pY=0.15       n=6

 

 

Say we want to find P(X<4).

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

From the table it follows that,

 

 

P(X<4) = P(Y>1)

 

 

and

 

 

P(Y>1) = P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5)

 

 

it follows that,

 

 

P(Y>1) = P(Y>2)

 

 

P(Y>2) = P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5)

 

 

P(Y=0) + P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5) = 1

 

 

P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5) = 1 - [ P(Y=0) + P(Y=1)]

 

 

P(Y>2) = 1 - [ P(Y=0) + P(Y=1)]

 

 

P(Y>2) = 1 - P(Y<1)

 

 

P(X<4) = 1 - P(Y<1)

 

 

P(X<4) = 1 - 0.7765 = 0.2235

 

 

back to top

 

 

The case     P(X>x)

 

Consider the binomial distribution for success,

 

 

X ~ B(n, pX)

 

 

X = 0, 1, 2, 3, 4, 5      pX=0.85       n=6

 

 

also the binomial distribution for failure,

 

 

Y ~ B(n, pY)

 

 

Y = 0, 1, 2, 3, 4, 5      pY=0.15       n=6

 

 

Say we want to find P(X>4).

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

P(X>4) = P(Y<1)

 

 

P(Y<1) = P(Y=0)

 

 

P(Y=0) = P(Y<0)

 

 

P(X>4) = P(Y<0)

 

 

reading P(Y<0) directly from the tables,

 

 

P(X>4) = 0.3771

 

 

back to top

 

 

The case     P(X>x)

 

Consider the binomial distribution for success,

 

 

X ~ B(n, pX)

 

 

X = 0, 1, 2, 3, 4, 5      pX=0.85       n=6

 

 

also the binomial distribution for failure,

 

 

Y ~ B(n, pY)

 

 

Y = 0, 1, 2, 3, 4, 5      pY=0.15       n=6

 

 

Say we want to find P(X>4).

 

 

X
0
1
2
3
4
5
Y
5
4
3
2
1
0

 

 

P(X>4) = P(Y<1)

 

 

reading P(Y<1) directly from the tables,

 

 

P(X>4) = 0.7765

 

 

 

 

 

back to top

 

 

 

this week's promoted video

 

 from Physics Trek

 

 

creative commons license

All downloads are covered by a Creative Commons License.
These are free to download and to share with others provided credit is shown.
Files cannot be altered in any way.
Under no circumstances is content to be used for commercial gain.

 

 

 

 

©copyright a-levelmathstutor.com 2020 - All Rights Reserved