PURE MATHEMATICS - Algebra

 

Laws of Logarithms

 

 

laws

proofs

changing the base

simultaneous equations

variable in the index

 

 

 

The Laws of Logarithms

 

 

 

 

                     

 

 

Proofs #1

prove that           

 

let                       (i      

                           (ii     

 

 

                           then                                                                        

 

                            it follows that              

 

  taking logs to the base 'a' each side,

    

     

  but    log x equals one 

 therefore                                 

 

substituting for A and B from (i and (ii

 

 

 

back to top

 

 

Proofs #2

prove that           

 

let        

which implies that                                        

       

taking logs on both side to the base 'b'

 

                 

 

rearranging to make 'y' the subject

 

substituting for 'y'       ( substituting for y)

 

 

back to top

 

 

Changing the Base

 

Remember that the change of base occurs in the term where the base is 'x' or some other variable.

 

 

Example #1

solve for x

 

changing to the base '2'

 

       multiplying both sides by

 

 

       rearranging        

 

 

       remembering that

 

 

       factorising the quadratic

 

       giving roots

      

      (implying that)

                 

 

back to top

 

Simultaneous Equations

 

'Substitution' simultaneous equations are common problems.

 

method:

 

1. first find what x is in terms of y
2. then substitute for x in the other equation
3. solve for y

 

 

Example #1

                 given that                                         (i

                 and                                           (ii

                 find x and y

 

 

                 implies that                         

                 but          

            

                                             

 

                                                                                         (iii

 

                substituting for x into (ii

 

         

                 

 

 

               implies(implying that)

 

 

answer     

 

 

 

               

 

answer    

 

back to top

 

Variable in the Index

 

method:

 

1. take logs on both sides

2. move the indices infront of the logs

3. expand the equation

4. collect x-terms to the left

5. sum the numbers to the right

 

 

These problems can be tricky with the amount of arithmetic involved.

 

So make sure you write everything down to make checking your working easier.

 

 

Example #1

             solve for x to 3 d.p.             

 

             taking logs to base 10 on each side

 

 

             expanding the powers

 

                 

 

substituting the values of logs to base 10 for 2, 3 and 6

 

           

 

            expanding,

 

 

collecting terms,

 

                       

 

 

                  

 

                       

 

to 3 d.p.       

 

 

back to top

 

 

creative commons license

All downloads are covered by a Creative Commons License.
These are free to download and to share with others provided credit is shown.
Files cannot be altered in any way.
Under no circumstances is content to be used for commercial gain.

 

 

 

 

©copyright a-levelmathstutor.com 2024 - All Rights Reserved